Magnitude Sensitive Competitive Learning

نویسندگان

  • Enrique Pelayo
  • J. David Buldain Pérez
  • Carlos Orrite-Uruñuela
چکیده

This paper presents a new algorithm, Magnitude Sensitive Competitive Learning (MSCL), which has the ability of distributing the unit weights following any magnitude calculated from the unit parameters or the input data inside the Voronoi region of the unit. This controlled behavior permits to surpass other standard Competitive Learning algorithms that only tend to concentrate neurons accordingly to the input data density. Some application examples applying different magnitude functions show the MSCL possibilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage Flicker Parameters Estimation Using Shuffled Frog Leaping Algorithm and Imperialistic Competitive Algorithm

Measurement of magnitude and frequency of the voltage flicker is very important for monitoring andcontrolling voltage flicker efficiently to improve the network power quality. This paper presents twonew methods for measurement of flicker signal parameters using Shuffled Frog Leaping Algorithm(SFLA) and Imperialist Competitive Algorithm (ICA). This paper estimates fundamental voltage andflicker ...

متن کامل

Fuzzy entropy-constrained competitive learning algorithm

A novel variable-rate vector quantizer (VQ) design algorithm using both fuzzy and competitive learning technique is presented. The algorithm enjoys better rate-distortion performance than that of other existing fuzzy clustering and competitive learning algorithms. In addition, the learning algorithm is less sensitive to the selection of initial reproduction vectors. Therefore, the algorithm can...

متن کامل

Diffusion approximation of frequency sensitive competitive learning

The focus of this paper is a convergence study of the frequency sensitive competitive learning (FSCL) algorithm. We approximate the final phase of FSCL learning by a diffusion process described by the Fokker-Plank equation. Sufficient and necessary conditions are presented for the convergence of the diffusion process to a local equilibrium. The analysis parallels that by Ritter-Schulten (1988) ...

متن کامل

The Effects of Cooperative, Competitive, and Individual Learning on Students\' Physical Readiness

The Effects of Cooperative, Competitive, and Individual Learning on Students' Physical Readiness A. Shams, Ph.D.  B. Abdoli, Ph.D. P. ShamsipoorDehkordi, Ph.D. To compare the effectiveness of three learning styles in physical education, a sample of 120 male sixth graders was randomly selected using cluster sampling method and then randomly assigned to three experimenta...

متن کامل

Convergence Conditions for Frequency Sensitive Competitive Learning

We present suucient and necessary conditions for the convergence of Frequency Sensitive Competitive Learning (FSCL) algorithm to a local equilibrium. The nal phase of the FSCL convergence is analyzed by describing the process with a Fokker-Plank equation. The analysis parallels that by Ritter and Schulten for the KSFM algorithm. We show that the convergence conditions involve only the learning ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 112  شماره 

صفحات  -

تاریخ انتشار 2012